TYLER R. FARA

github.com/oneteaches2learn/solvers

Department of Mathematics Kidder Hall 314, Oregon State University, Corvallis, OR 97331-4605 farat@oregonstate.edu, 619-253-8184

EDUCATION

Ph.D. Mathematics, Oregon State University, GPA: 4.0 (Advisor: Dr. M. Peszynska) 2020-Present Anticipated graduation: Spring 2026. M.S. Mathematics, Oregon State University, GPA: 4.0 (Advisor: Dr. M. Peszynska) 2020 - 2022Capstone project: "Investigating the Bioheat Transfer (Pennes) Equation". M.S. Biomedical Science, Colorado State University, GPA: 4.0 2009-2010 B.S. Chemistry, Indiana University 2003-2007

SCIENTIFIC COMPUTING SKILLS

Minor: Mathematics.

- MATLAB: Developed backslashPDE, my own object-oriented FEM suite with tools for meshing, solving, and post-processing problems on 2D perforated domains; supports nonlinear, constrained, and coupled PDE/ODE systems with nonlinear boundary conditions.
- C++: Contributed to Pele and AMReX (production-level HPC frameworks for supercomputing CFD simulations) during two internships at NREL; additional experience with parallel computing libraries MPI, OpenMP, and CUDA, with linear algebra libraries BLAS / LAPACK, and with FEM libraries MFEM and deal.ii from research and coursework.
- Python: Used for post-processing and visualization of results at NREL. Some experience with pandas, NumPy, SciPy, matplotlib, and scikit-learn through coursework in machine learning. Some experience with ngsolve for FEM simulations.
- C and Fortran: Used in coursework on data structures, memory management, algorithm design, and parallel programming.
- git and GitHub: Used regularly in my personal and collaborative coding projects, including workflow management and remote repository integration.
- Linux / UNIX: Extensive experience in remote and high-performance computing environments, including supercomputer access, batch job management, and automation of research workflows.

RESEARCH SUPPORT

NREL Research Collaboration (Funded Extension of MSGI Project),

July-October 2025

National Renewable Energy Lab (NREL), PI: Michael Martin

- Continuing and expanding MSGI 2023 research on propagation of error in viscosity and thermal conductivity calculations due to EoS choice in combustion simulations.
- Supported through NREL funding to prepare results for publication and further model validation.

Graduate Research Stipend

May-June 2025

• Funded by the Joel Davis Faculty Scholar Award, awarded to Prof. Malgorzata Peszynska, Dept. of Mathematics, Oregon State University.

Graduate Research Assistant, NSF DMS-1912938 (PI: M. Peszynska) Graduate Research Assistant, NSF DMS-1912938 (PI: M. Peszynska)

Spring 2024 Winter 2024

Graduate Research Assistant, NSF DMS-1912938 (PI: M. Peszynska)

Summer 2022

• Research on efficient implementation and convergence of mixed finite element schemes with focus on overlapping continua and immersed boundary approach.

NSF Mathematical Sciences Graduate Internship (MSGI),

Summer 2023

National Renewable Energy Lab (NREL), (PI: Michael Martin)

- Research on propagation of error in viscosity and thermal conductivity calculations due to equation of state (EoS) choice in exascale-level supercomputer combustion simulation.
- Discovered an error in the science underlying the mixing theory used to compute viscosity for fluid mixtures and proposed a correction, which the team at NREL implemented.

PROFESSIONAL EXPERIENCE

Instructor of Record. Oregon State University

Winter 2023 & Winter 2025

• Instructor of record for math department's Ph.D. qualifying exam preparation seminar.

Graduate Teaching Assistant, Oregon State University

2020-Present

- GTA: Differential equations, differential and integral calculus, vector calculus, analysis, linear algebra.
- Grader: Analysis, numerical partial differential equations.

SIAM Student Chapter Vice President, Oregon State University

Fall 2024–Fall 2025

SIAM Student Chapter President, Oregon State University

Fall 2023–Fall 2024

Search Committee for Differential Geometry Position, Oregon State University

Fall 2023–Spring 2024

- Student representative for search committee.
- Research on efficient implementation and convergence of mixed finite element schemes with focus on overlapping continua and immersed boundary approach.

OSU Calculus Course Remodel, Paid Consultant, Oregon State University

Summer 2021

• Wrote lesson plans and in-class content for Oregon State's project to standardize the calculus sequence.

Research Experience for Undergraduates (REU), University of Colorado – Boulder

Summer 2019

• Adviser: Dr. Markus Pflaum. Project: "Topological Data Analysis in Cosmology".

Manager of Content and Instructional Design, Kaplan Test Prep

2015 - 2020

• Led award-winning projects and teams of up to 50 collaborators creating content in undergraduate physics, chemistry, biology, psychology, and mathematics. Designed, wrote, and edited lessons, books, videos, marketing material, and practice resources. Gained a lot of experience with collaborative work.

MCAT Instructor, Kaplan Test Prep

2010-2024

• Taught undergraduate science and test preparation strategies, online and in person, to premed students. Demonstrated excellent communication and presentation skills, specializing in science and mathematics content.

Professional Research Assistant (PI: Dr. Paul Megee), University of Colorado, Anschutz

2010-2013

• Researched and implemented molecular genetics techniques to create antibody tags to proteins of interest.

RESEARCH INTERESTS

- Analysis and approximation of partial differential equations modeling coupled phenomena with discontinuous data. Hybrid continuum/discrete models. Mixed finite element methods.
- Multiscale modeling of coupled thermal and hydrodynamic phenomena in the human body, including heat transfer through blood flow and medical applications thereof, e.g. hypothermia and hyperthermia treatments.
- High-performance computing, including techniques involving parallel algorithm design and distributed/GPU computing.

PUBLICATIONS

Manuscript in Revision:, "Nonlinear bioheat model for dynamics of hypothermia and frostbite."

• Manuscript in revision for Mathematical Biosciences and Engineering

• M. Peszynska, T. Fara, "Nonlinear bioheat model for dynamics of hypothermia and frostbite." This paper describes a coupled PDE/ODE system modeling, respectively, temperature in the hands/feet and the body core during exposure to extreme cold. Coupling through nonlinear energy exchange terms is used to model the body's protective mechanisms against hypothermia. This paper presents describes the model and presents simulation results.

Manuscript in Preparation:, "Stability analysis and finite element discretization of ... hypothermia and frostbite."

• M. Peszynska, T. Fara, "Stability analysis and a priori estimates for a finite element discretization of a nonlinear model for the dynamics of hypothermia and frostbite." This paper presents stability analysis and a priori estimates for a generalization of the model presented in our prior paper, "Nonlinear bioheat model for dynamics of hypothermia and frostbite."

Manuscript in preparation:, "Quantifying the importance of equation of state..."

• T. Fara, S. Yellapantula, M. Martin, "Quantifying the importance of equation of state and transport property compatibility in supercritical fluids" This paper describes the effect of equation of state choice (ideal gas law, Soave–Kwong, or Span–Wagner) and viscosity model (Laesecke–Muzny or Lemmon–Jacobsen) on simulations of supercritical CO₂ and other chemical species involved in combustion.

Co-author, "Frozen fingers, warm heart: a predictive model for survival heat management." May 2025

• T. Fara, M. Peszynska. "Frozen fingers, warm heart: a predictive model for survival heat management"; SIAM News online. SIAM News blog. Manuscript submitted for publication.

Co-author, "Mixed dimensional modeling with overlapping continua on Cartesian grids..." September 2023

• M. Peszynska, T. Fara, M. Phelps, N. Zhang, "Mixed dimensional modeling with overlapping continua on Cartesian grids for complex applications"; Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems, Springer, 2023, p129-145, https://doi.org/10.1007/978-3-031-40864-9_8.

Co-author, "Cell cycle-specific cleavage of Scc2 regulates its cohesin deposition activity." May 2014

• J. Woodman, T, Fara, M. Dzieciatkowska, M. Trejo, N. Luong, K. C. Hansen, P. C. Megee. "Cell cycle-specific cleavage of Scc2 regulates its cohesin deposition activity." Proceedings of the National Academy of Sciences, 111(19), 7060-7065, 2014.

PRESENTATIONS

SIAM PNW, University of Washington

October 2025

• Analysis and Simulation of a Nonlinear Bioheat Model for Hypothermia and Frostbite.

MFEM Community Workshop, Portland State University

September 2025

• A Stable FEM Framework for Coupled PDE-ODE Bioheat Models with Nonlinear Boundary Conditions.

Applied Math Seminar, Oregon State University

May 2025

Product-space a priori error analysis and numerical simulation of a coupled nonlinear bioheat PDE-ODE model.

CASCADE RAIN Mathematics Meeting, Corvallis, OR

April 2025

• Hypothermia and frostbite: a model for energy exchange between the body core and extremities during cold exposure.

SIAM Annual Conference, Contributed Talk, Spokane, WA

July 2024

• Modeling Hypothermia and Frostbite with Coupled Hydrological and Thermal Models.

SIAM Life Sciences, Contributed Talk, Portland, OR

June 2024

• Modeling Hypothermia with a Multiscale Model Coupling Partial Differential Equations for Blood Flow and Temperature with Ordinary Differential Equations.

Applied Math Seminar, Oregon State University

April 2024

• Modeling hypothermia, frostbite, and blood flow regulation with a coupled PDE and ODE system.

ICERM: PDEs and Geometry, Poster Session, Brown University

March 2024

• Modeling hypothermia with a multiscale model coupling partial differential equations for temperature with ordinary differential equations.

ICERM: Multiphysics, Poster Session, Brown University

February 2024

• Modeling hypothermia with a multiscale model coupling partial differential equations for temperature with ordinary differential equations.

Applied Mathematics Seminar, Oregon State University

October 2023

• Comparing the Effect of Equation of State Choice on Supercritical CO₂ Simulation.

SIAM PNW, Contributed Talk, Western Washington University

October 2023

• Modeling hypothermia with mixed dimensional approach coupled with an ordinary differential equation.

Presentation of Research Results, National Renewable Energy Lab (NREL)

September 2023

• Examining the Cause of $\mu < 0$.

NSF MSGI Virtual Research Symposium, Virtual (host site: NREL)

August 2023

• Comparing the Effect of Equation of State Choice on Supercritical CO₂ Simulation.

Masters Capstone Presentation, Oregon State University

December 2022

• Investigating the Bioheat Transfer (Pennes) Equation.

Applied Mathematics Seminar, Oregon State University

May 2022

• Lightning talk about Modeling Hypothermia and Hyperthermia.

SIAM PNW Poster Session and Poster Blitz, Washington State University, Vancouver

May 2022

• Modeling Hypothermia and Hyperthermia.

REU Conference at University of Colorado, University of Colorado - Boulder

August 2019

• Topological Data Analysis in Cosmology, with M. Pflaum and others in REU group. (Presented by Fara, T.)

CONFERENCES AND WORKSHOPS ATTENDED

SIAM PNW [†] , Seattle, WA	October 2025
MFEM Community Workshop [†] , Portland, OR	September 2025
SIAM Annual [†] , Spokane, WA	July 2024
SIAM Life Sciences, Portland, OR	June 2024
ICERM, PDEs and Geometry: Numerical Aspects [†] , Brown University,	March 2024
ICERM, Numerical Analysis of Multiphysics Problems † , Brown University,	February 2024
URSSI Research Software Engineering Winter School, Oregon State University in Portla	nd January 2024
SIAM PNW, Biennial Meeting [†] , Western Washington University	October 2023
SIAM PNW, Biennial Meeting [†] , Washington State – Vancouver	May 2022
Analysis of Fluid and Elastic Bodies, Universitat Regensburg (virtual)	April 2022
College of Science, Thought Leadership Forum, Oregon State University	March 2022
Weekly Applied Mathematics and Computation Seminar, Oregon State University † : Travel award recipient.	Fall 2021–Present

AWARDS

Graduate Student Excellence Award, Oregon State University	Spring 2025
Excellence in Qualifying Exams Award, Oregon State University	Fall 2022
Outstanding Performance in Coursework Award, Oregon State University	Spring 2022
Kaplan Way Leadership Award: Excellence in Product Creation, Kaplan Test Prep	2017 and 2018

COURSEWORK

Graduate Mathematics (Oregon State University, GPA 4.0): Finite Element Methods, Finite Difference Methods, Discontinuous Galerkin Methods, Computational Multiphysics, Computational Fluid Dynamics, Approximation of Flow PDEs, Computational Harmonic Analysis, Numerical Linear Algebra, Numerical ODEs, Partial Differential Equations, Advanced PDEs, Real Analysis, Complex Analysis, Linear Algebra, Abstract Algebra, Topology, Differential Geometry, General Relativity.

Graduate Science (Colorado State University, GPA 4.0): Physiology, Histology, Anatomy, Applied Anatomy, Cadaver Dissection, Neuroanatomy.

Undergraduate Science: Physics, Biology, Molecular Biology, Chemistry, Organic Chemistry, Physical Chemistry, Analytical Chemistry, Spectroscopy and Separations, Biochemistry, Physiology, Algorithms, Data Structures.

TEACHING EXPERIENCE

Instructor of Record, Oregon State University

Winter 2023 & Winter 2025

Qualifying Exam Prep Seminar

Graduate Teaching Assistant, Oregon State University

2020-Present

Trigonometry (Fall 2020), Differential Calculus (Winter 2021), Vector Calculus 1 (Spring 2021), Vector Calculus 2 (Fall 2021), Vector Calculus 1 (Winter 2022), Ordinary Differential Equations (Spring 2022 & Spring 2023), Integral Calculus (Fall 2022), Analysis 2 (Fall 2023), Linear Algebra (Fall 2025)

Medical College Admissions Test (MCAT) Instructor, Kaplan Test Prep

2010–Present

Other tests taught: DAT, OAT, PCAT, GMAT, GRE

MCAT Summer Intensive Program, Director, Kaplan Test Prep

Summer 2014

- Organized and led summer camp for 65 MCAT students and 10 teachers.
- Primary instructor, teaching in person, daily to all 65 students.
- Mentored, coached, and managed the other teachers.

PROFESSIONAL SOCIETIES

Phi Kappa Phi Honor Society	2022–Present
Society for Industrial and Applied Mathematics (SIAM)	2020–Present
American Mathematical Society (AMS)	2020–Present

BOOK EDITOR/AUTHORSHIP CREDITS

Primary Author, ChemHELP, PhysicsHELP, OrgoHELP, 1st Edition,	2017
Contributing Author, MCAT Behavioral Sciences, 7th Edition, Contribution: Chapter 11 Contributing Author, MCAT Lesson Book, 1st Edition, Contribution: Chapter 4	$2020 \\ 2020$
Editor in Chief, MCAT Behavioral Sciences, 8th Edition Editor in Chief, ChemHELP, PhysicsHELP, and OrgoHELP, 1st Edition Editor in Chief, MCAT High Yield Science, 2nd Edition	2021 2017 2016
Editor, MCAT Seven Book Series, 2nd-8th Editions Editor, MCAT 528, 1st Edition Editor, DAT/OAT Prep Plus, 1st Edition Editor, MCAT Advanced, 1st Edition	2015–2021 2020 2016 2016

VIDEO PRODUCTION CREDITS

Producer, Aztec: High School Equivalency, 500 videos

2018

- Role: Project manager for 50 content creators and a video production crew; lead designer, lead video director.
- Impact: Product sold for \$1 million against a \$300,000 budget.

Producer, HELPsuite, 300 videos

2017 - 2018

- Role: Project manager for 20 content creators, lead designer, lead writer, lead video director, on-camera talent
- Impact: Video series has amassed over 250k views on YouTube.

Producer, MCAT High Yield Science, 32 videos and accompanying lessons

2015 - 2016

- Role: Project manager for 5 content creators, lead designer, lead writer, lead video director, on-camera talent.
- Impact: These videos are the centerpiece of Kaplan's MCAT course, a \$30 million per year product. The accompanying lessons have been taught by thousands of teachers to over half a million MCAT students.

On-Camera Talent, MCAT Next Gen, 5 videos	2021
On-Camera Talent, The Leitner System for Flashcards, 5 videos	2020
On-Camera Talent, PCAT: Chemistry, 29 videos	2019
On-Camera Talent, High Yield Science, 11 videos	2015
On-Camera Talent, MCAT: Lessons on Demand, 10 videos	2014
On-Camera Talent, MCAT National Marketing Campaign, 1 video	2014